

Available online at www.sciencedirect.com

Journal of Molecular Catalysis A: Chemical 271 (2007) 261-265

www.elsevier.com/locate/molcata

A synergistic effect of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts in the oxidative dehydrogenation of C₄ raffinate-3 to 1,3-butadiene

Ji Chul Jung^a, Howon Lee^a, Heesoo Kim^a, Young-Min Chung^b, Tae Jin Kim^b, Seong Jun Lee^b, Seung-Hoon Oh^b, Yong Seung Kim^b, In Kyu Song^{a,*}

^a School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Shinlim-dong, Kwanak-ku, Seoul 151-744, South Korea

^b SK Corporation, Yuseong-ku, Daejeon 305-712, South Korea

Received 22 January 2007; accepted 6 March 2007 Available online 12 March 2007

Abstract

 α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts were prepared by a co-precipitation method for use in the oxidative dehydrogenation of C₄ raffinate-3 to 1,3-butadiene. A series of mixed catalysts composed of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ were also prepared by a mechanical mixing method to investigate any synergistic effects of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts in the oxidative dehydrogenation of C₄ raffinate-3. The α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts were formed successfully, as confirmed by XRD, FT-IR, Raman spectroscopy, and ICP-AES analyses. The γ -Bi₂MoO₆ catalyst exhibited a better catalytic performance than the α -Bi₂Mo₃O₁₂ catalyst due to its facile oxygen mobility. The conversion of n-butene and the yield for 1,3-butadine over the mixed catalysts showed volcano-shaped curves with respect to γ -Bi₂MoO₆ content due to the synergistic effect of the α -Bi₂MoO₆ catalysts. Among the mixed catalysts, the catalyst composed of 10 wt.% α -Bi₂Mo₃O₁₂ and 90 wt.% γ -Bi₂MoO₆ catalyst, while the α -Bi₂Mo₃O₁₂ catalyst retained much more adsorption sites for *n*-butene than the γ -Bi₂MoO₆ catalyst. The synergistic effect of the α -Bi₂Mo₃O₁₂ and 90 wt.% γ -Bi₂MoO₆ and γ -Bi₂MoO₆ catalysts in the oxidative dehydrogenation of C₄ raffinate-3 and γ -Bi₂MoO₆ catalyst retained much more adsorption sites for *n*-butene than the γ -Bi₂MoO₆ catalyst. The synergistic effect of the α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts in the oxidative dehydrogenation of C₄ raffinate-3 was due to a combination of the facile oxygen mobility of γ -Bi₂MoO₆ and the abundant adsorption sites of α -Bi₂Mo₃O₁₂ for *n*-butene.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Bismuth molybdate; C4 raffinate-3; 1,3-Butadiene; Oxidative dehydrogenation; Synergistic effect; Oxygen mobility; Adsorption ability

1. Introduction

The oxidative dehydrogenation of *n*-butene has attracted considerable interest as a promising process for producing 1,3-butadiene in a single unit [1–3]. The oxidative dehydrogenation of *n*-butene is independent of the naphtha cracking unit in the production of 1,3-butadiene in the sense that no additional major naphtha cracking products such as ethylene and propylene are produced in the production of 1,3-butadiene [2–5]. Furthermore, the oxidative dehydrogenation of *n*-butene has many advantages over the conventional naphtha cracking process in producing 1,3-butadiene. For example, the commercial value of C₄ raffinate-3 can be maximized by producing 1,3-butadiene through an oxidative dehydrogenation reaction. C₄ raffinate-3

1381-1169/\$ - see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.molcata.2007.03.016

is a residue obtained after separating 1,3-butadiene, isobutene, and 1-butene from the C₄ raffinate stream in a naphtha cracking unit. C₄ raffinate-3, therefore, is mainly composed of 2-butene (*trans*-2-butene and *cis*-2-butene), *n*-butane, and unseparated 1-butene.

Bismuth molybdates have been widely investigated as efficient catalysts for the oxidative dehydrogenation of *n*-butene [6–8]. Typically, three types of bismuth molybdates, α -Bi₂Mo₃O₁₂, β -Bi₂Mo₂O₉, and γ -Bi₂MoO₆, have been considered for this reaction [9–11]. However, it has been reported that β -Bi₂Mo₂O₉ is thermally unstable and decomposes into α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ in the temperature range of 400–550 °C [3,12]. Therefore, the oxidative dehydrogenation of *n*-butene over α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts at reaction temperatures in the range of 400–550 °C has been a subject of extensive study.

It was reported that a mixed catalyst composed of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ showed a synergistic effect in

^{*} Corresponding author. Tel.: +82 2 880 9227; fax: +82 2 889 7415. *E-mail address:* inksong@snu.ac.kr (I.K. Song).

several selective oxidation reactions [13–16]. It was proposed that the synergistic effect of these two catalysts in the oxidative dehydrogenation of 1-butene was attributed to the formation of a crystal phase similar to β -Bi₂Mo₂O₉ [13]. A synergistic effect of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts in the partial oxidation of propylene to acrolein has also been reported [14]. In the partial oxidation of propylene, the synergistic effect of these two catalysts was explained by a remote control mechanism, in which oxygen species formed on the γ -Bi₂MoO₆ migrate onto the surface of the α -Bi₂Mo₃O₁₂ to create active sites. Several plausible mechanisms have also been proposed to explain the synergistic effect of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts [15,16].

Developing an efficient catalyst for the oxidative dehydrogenation of C₄ raffinate-3 to 1,3-butadiene would be a challenging work. Furthermore, elucidating the synergistic effect of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts in the oxidative dehydrogenation of C₄ raffinate-3 would be worthwhile. In this work, $\alpha\mbox{-}Bi_2Mo_3O_{12}$ and $\gamma\mbox{-}Bi_2MoO_6$ catalysts were prepared by a co-precipitation method for use in the oxidative dehydrogenation of C₄ raffinate-3 to 1,3-butadiene. The prepared catalysts were characterized by XRD, BET, FT-IR, Raman spectroscopy, and ICP-AES analyses. A series of mixed catalysts composed of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ were then prepared by a mechanical mixing method, and were applied to the oxidative dehydrogenation of C₄ raffinate-3, in an attempt to investigate any synergistic effects of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts. The oxygen mobility of the catalyst was measured by TPRO (temperature-programmed reoxidation) experiments, because oxygen mobility is known to a crucial factor determining the catalytic performance in the oxidative dehydrogenation of *n*-butene [2,17–22]. The adsorption ability of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ for *n*-butene was measured by C₄ raffinate-3-TPD (temperature-programmed desorption) experiments.

2. Experimental

2.1. Catalyst preparation

The $\alpha\mbox{-}Bi_2Mo_3O_{12}$ and $\gamma\mbox{-}Bi_2MoO_6$ catalysts were prepared by a co-precipitation method. A known amount of bismuth nitrate (Bi(NO₃)₃·5H₂O from Sigma–Aldrich) was dissolved in distilled water that had been acidified with concentrated nitric acid. The solution was then added dropwise into an aqueous solution containing a known amount of ammonium molybdate ((NH₄)₆Mo₇O₂₄·4H₂O from Sigma-Aldrich) under vigorous stirring. During the co-precipitation step, the pH of the mixed solution was precisely controlled using known amounts of ammonia solution (3 M). The pH values were maintained at 1.5 and 3.0 in the preparation of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆, respectively. After the resulting solution was vigorously stirred at room temperature for 1 h, the precipitate was filtered to obtain a solid product. The solid product was dried overnight at $110 \,^{\circ}$ C, and it was then calcined at 475 °C for 5 h in a stream of air to yield the final form (α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆). A series of mixed catalysts composed of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆

were also prepared by a mechanical mixing method. A mechanical mixture of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ in different ratios was simply ground to prepare the mixed catalyst.

2.2. Characterization

The formation of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ was confirmed by XRD (MAC Science, M18XHF-SRA), FT-IR (Nicolet, Impact 410), and Raman spectroscopy (Horiaba Jobin Yvon, T64000) measurements. The Bi/Mo atomic ratios of the prepared catalysts were determined by ICP-AES (Shimadz, ICP-1000IV) analyses. The surface areas of the catalysts were measured using a BET apparatus (Micromeritics, ASAP 2010).

The oxygen mobility of the catalyst was measured by TPRO (temperature-programmed reoxidation) experiments. Prior to the TPRO measurement, each catalyst was partially reduced by carrying out the oxidative dehydrogenation of C₄ raffinate-3 at 420 °C for 3 h in the absence of an oxygen feed. After placing the reduced catalyst in a conventional TPRO apparatus, a mixed stream of oxygen (10%) and helium (90%) was introduced to the catalyst sample. The furnace temperature was then increased from room temperature to 500 °C at a heating rate of 5 °C/min. The amount of oxygen consumed was measured using a thermal conductivity detector (TCD).

The adsorption ability of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ for n-butene was measured by C4 raffinate-3-temperatureprogrammed desorption (TPD) experiments. Each catalyst (2 g) was charged into the quartz reactor of a conventional TPD apparatus. The catalyst was pretreated at 200 °C for 2 h under a flow of helium (20 ml/min) to remove any physisorbed organic molecules. 20 ml of C₄ raffinate-3 (1-butene (14.2 wt.%) + trans-2-butene (38.3 wt.%) + cis-2-butene (20.0 wt.%) + n-butane (26.9 wt.%) + cyclobutane (0.4 wt.%) + methyl cyclopropane (0.1 wt.%) + residue (0.1 wt.%)) was then pulsed into the reactor every minute at room temperature under a flow of helium (5 ml/min), until the adsorption sites of the catalyst became saturated with *n*-butene. The physisorbed *n*-butene was removed by evacuating the catalyst sample at 50 °C for 1 h. The furnace temperature was increased from room temperature to 450 °C at a heating rate of 5 °C/min under a flow of helium (10 ml/min). The desorbed n-butene and other components were detected using a GC-MASS spectrometer (Agilent, 5975MSD-6890N GC).

2.3. Oxidative dehydrogenation of C_4 raffinate-3

The oxidative dehydrogenation of C₄ raffinate-3 to 1,3butadiene was carried out in a continuous flow fixed-bed reactor in the presence of air and steam. C₄ raffinate-3 containing 72.5 wt.% *n*-butene (1-butene (14.2 wt.%) + *trans*-2-butene (38.3 wt.%) + *cis*-2-butene (20.0 wt.%)) was used as a *n*-butene source, and air was used as an oxygen source (nitrogen in the air serves as a carrier gas). Water was sufficiently vaporized by passing through a pre-heating zone and continuously fed into the reactor together with C₄ raffinate-3 and air. The feed composition was fixed at *n*-butene:oxygen:steam = 1:0.75:15. Prior to the catalytic reaction, the catalyst was pretreated with air at

Fig. 1. XRD patterns of (a) α -Bi₂Mo₃O₁₂ and (b) γ -Bi₂MoO₆ catalysts obtained before and after the catalytic reaction (48 h-reaction at 420 °C).

470 °C for 1 h. The catalytic reaction was carried out at 420 °C. The gas hourly space velocity (GHSV) was fixed at $300 h^{-1}$ on the basis of *n*-butene. Reaction products were periodically sampled and analyzed with a gas chromatography. The conversion of *n*-butene and the selectivity for 1,3-butadiene were calculated on the basis of carbon balance as follows. The yield for 1,3-butadiene was calculated by multiplying conversion and selectivity.

Conversion of *n*-butene = $\frac{\text{moles of } n\text{-butene reacted}}{\text{moles of } n\text{-butene supplied}}$

Selectivity for 1, 3-butadiene = $\frac{\text{moles of 1, 3-butadiene formed}}{\text{moles of } n\text{-butene reacted}}$

3. Results and discussion

3.1. Formation of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆

The successful formation of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts was well confirmed by XRD, FT-IR, Raman spectroscopy, and ICP-AES measurements. Fig. 1 shows the XRD patterns of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts obtained before and after the catalytic reaction (48 h-reaction at 420 $^{\circ}$ C). These XRD patterns are in good agreement with those reported in previous works [2,18,23-25], indicating the successful formation of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts. This also implies that the α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts are thermally stable during a catalytic reaction performed at 420 °C. FT-IR and Raman spectra of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts are also in good agreement with those reported in previous works [2,23,24], although these are not shown here. The Bi/Mo atomic ratios of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ determined by ICP-AES analyses were found to be 0.6 and 1.96, respectively. These values are in good agreement with the theoretical values (Bi/Mo = 2/3 for α -Bi₂Mo₃O₁₂ and Bi/Mo = 2 for γ -Bi₂MoO₆). The above results also support the conclusion that bismuth molybdate catalysts were successfully prepared. The BET surface areas of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts were very low (1.9 and $3.5 \text{ m}^2/\text{g}$, respectively), as reported in previous works [18,26].

3.2. Catalytic performance and oxygen mobility

Fig. 2 shows the catalytic performance of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts in the oxidative dehydrogenation of C₄ raffinate-3 at 420 °C after a 48 h-reaction. It was found that both the α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts exhibited a stable catalytic performance with time on stream without any catalyst deactivation during the 48 h-reaction, as can be inferred from the stable crystal structure of the catalysts before and after the reaction (Fig. 1). The conversion of *n*-butene and the selectivity for 1,3-butadiene obtained with γ -Bi₂MoO₆ catalyst were much higher than the corresponding values obtained with α -Bi₂Mo₃O₁₂ catalyst. As a consequence, the γ -Bi₂MoO₆ catalyst exhibited a higher yield for 1,3-butadiene than the α -Bi₂Mo₃O₁₂ catalyst.

In order to verify the different catalytic performance between α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆, TPRO experiments were conducted with an aim of measuring the oxygen mobility of the catalysts. As mentioned earlier, the oxygen mobility of the bismuth molybdate catalyst plays a key role in catalytic performance in the oxidative dehydrogenation of *n*-butene [17–20]. It is expected that a bismuth molybdate catalyst with facile oxygen mobility would show an excellent catalytic performance in

Fig. 2. Catalytic performance of α -Bi_2Mo_3O_{12} and γ -Bi_2MoO_6 catalysts in the oxidative dehydrogenation of C_4 raffinate-3 at 420 °C after a 48 h-reaction.

Fig. 3. TPRO profiles of partially reduced $\alpha\mbox{-}Bi_2Mo_3O_{12}$ and $\gamma\mbox{-}Bi_2MoO_6$ catalysts.

this reaction [19–22]. Fig. 3 shows the TPRO profiles of partially reduced α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts. TPRO peak temperature and TPRO peak area reflect the ease of oxygen mobility and the amount of make-up oxygen (oxygen vacancy), respectively. As shown in Fig. 3, the TPRO peak temperature for γ -Bi₂MoO₆ catalyst (280 °C) was much lower than that for α -Bi₂Mo₃O₁₂ catalyst (380 °C). Furthermore, the TPRO peak area for γ -Bi₂MoO₆ catalyst was larger than that for α -Bi₂Mo₃O₁₂ catalyst. These results indicate that the γ -Bi₂MoO₆ catalyst retains a higher oxygen mobility than the α -Bi₂Mo₃O₁₂ catalyst. It can thus be concluded that the enhanced catalytic performance of γ -Bi₂MoO₆ was due to the facile oxygen mobility of γ -Bi₂MoO₆.

3.3. Synergistic effect of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆

In order to investigate any synergistic effects of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ on the catalytic performance in the oxidative dehydrogenation of C₄ raffinate-3, a series of mixed catalysts composed of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ were prepared by a mechanical mixing method. Fig. 4 shows the catalytic performance of mixed catalysts in the oxidative dehydrogenation of C₄ raffinate-3 as a function of γ -Bi₂MoO₆ content. The selec-

Fig. 5. C₄ raffinate-3-TPD profiles of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts.

tivity for 1,3-butadiene increased monotonically with increasing γ -Bi₂MoO₆ content. It is interesting to note that the conversion of *n*-butene and the yield for 1,3-butadiene showed volcano-shaped curves with respect to γ -Bi₂MoO₆ content, indicating a synergistic effect of the α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts. The conversion of *n*-butene and the yield for 1,3-butadiene were the highest over the mixed catalyst composed of 10 wt.% α -Bi₂Mo₃O₁₂ and 90 wt.% γ -Bi₂MoO₆. The findings revealed that the crystal structure of the individual component in the mixed catalyst was not changed after the catalytic reaction under our experimental conditions. This indicates that the synergistic effect of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts was not due to aggregation or segregation effects of these two components as a result of the formation of a new crystal phase.

Although the α -Bi₂Mo₃O₁₂ catalyst retained a lower oxygen mobility than the γ -Bi₂MoO₆ catalyst (Fig. 3), it is known that the α -Bi₂Mo₃O₁₂ catalyst has a favorable structure for providing abundant adsorption sites for *n*-butene [22], which leads to the facile activation of *n*-butene. In order to determine the adsorption ability of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts for *n*-butene, C₄ raffinate-3-TPD experiments were conducted over the catalysts. Fig. 5 shows the C₄ raffinate-3-TPD profiles of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts. It was found that

Fig. 4. Catalytic performance of mixed catalysts in the oxidative dehydrogenation of C_4 raffinate-3 as a function of γ -Bi₂MoO₆ content: (a) conversion of *n*-butene and selectivity for 1,3-butadiene, and (b) yield for 1,3-butadiene.

the α -Bi₂Mo₃O₁₂ catalyst showed strong mass signal intensities, while the γ -Bi₂MoO₆ catalyst showed weak mass signal intensities at temperatures ranging from room temperature to 450 °C. A series of TPD experiments revealed that the peaks in the low temperature region (below 200 °C) were attributed to desorbed *n*-butene (1-butene, *trans*-2-butene, and *cis*-2-butene), while those in the high temperature region (above 200 °C) corresponded to desorbed CO₂. The evolution of 1,3-butadiene was not detected over either catalyst under our experimental conditions. Undoubtedly, the total area of the TPD profile reflects the amount of *n*-butene adsorbed on the bismuth molybdate catalysts. As shown in Fig. 5, the total area of the TPD profile for the α -Bi₂Mo₃O₁₂ catalyst is much larger than that for the γ -Bi₂MoO₆ catalyst. This indicates that the α -Bi₂Mo₃O₁₂ catalyst retains abundant adsorption sites for *n*-butene, which leads to the facile activation of *n*-butene in the catalytic reaction.

It can be concluded that the γ -Bi₂MoO₆ catalyst retains a higher oxygen mobility than the α -Bi₂Mo₃O₁₂ catalyst, while the α -Bi₂Mo₃O₁₂ catalyst retains much more adsorption sites for *n*-butene than the γ -Bi₂MoO₆ catalyst. Therefore, it is believed that the synergistic effect of the α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts in the oxidative dehydrogenation of C₄ raffinate-3 was due to a combination of the facile oxygen mobility of γ -Bi₂MoO₆ catalyst and the abundant adsorption sites of α -Bi₂Mo₃O₁₂ catalyst for *n*-butene.

4. Conclusions

 α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts were prepared by a co-precipitation method, and were applied to the oxidative dehydrogenation of C₄ raffinate-3 to 1,3-butadiene. The successful formation of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts was well confirmed by XRD, FT-IR, Raman spectroscopy, and ICP-AES analyses. The γ -Bi₂MoO₆ catalyst exhibited a better catalytic performance than the α -Bi₂Mo₃O₁₂ catalyst due to the facile oxygen mobility of the γ -Bi₂MoO₆ catalyst. The conversion of *n*-butene and the yield for 1,3-butadine over the mixed catalysts showed volcano-shaped curves with respect to γ -Bi₂MoO₆ content due to the synergistic effect of the α - $Bi_2Mo_3O_{12}$ and γ - Bi_2MoO_6 catalysts. In particular, a mixed catalyst composed of 10 wt.% α -Bi₂Mo₃O₁₂ and 90 wt.% γ -Bi₂MoO₆ showed the best catalytic performance. It was revealed that the γ -Bi₂MoO₆ catalyst retained a higher oxygen mobility than the α -Bi₂Mo₃O₁₂ catalyst, while the α -Bi₂Mo₃O₁₂ catalyst

retained much more adsorption sites for *n*-butene than the γ -Bi₂MoO₆ catalyst. It can be concluded that the synergistic effect of the α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts in the oxidative dehydrogenation of C₄ raffinate-3 was due to a combination of the facile oxygen mobility of γ -Bi₂MoO₆ and the abundant adsorption sites of α -Bi₂Mo₃O₁₂ for *n*-butene.

Acknowledgements

The authors acknowledge the support from Korea Energy Management Corporation (2005-01-0090-3-010).

References

- [1] S.C. Oh, H.P. Lee, H.T. Kim, K.O. Yoo, Korean J. Chem. Eng. 16 (1999) 543.
- [2] A.P.V. Soares, L.D. Dimitrov, M.C.A. Oliveira, L. Hilaire, M.F. Portela, R.K. Grasselli, Appl. Catal. A 253 (2003) 191.
- [3] Ph.A. Batist, J.F.H. Bouwens, G.C.A. Schuit, J. Catal. 25 (1972) 1.
- [4] R.K. Grasselli, Top. Catal. 21 (2002) 79.
- [5] H.H. Kung, Adv. Catal. 40 (1994) 1.
- [6] W.J. Linn, A.W. Sleight, J. Catal. 41 (1976) 134.
- [7] M.F. Portela, M.M. Oliveira, M.J. Pires, Polyhedron 5 (1986) 119.
- [8] D.A.G. Van Oeffelen, J.H.C. Van Hooff, G.C.A. Schuit, J. Catal. 95 (1985) 84.
- [9] Ph.A. Batist, B.C. Lippens, G.C.A. Schuit, J. Catal. 5 (1966) 55.
- [10] A.C.A.M. Bleijenberg, B.C. Lippens, G.C.A. Schuit, J. Catal. 4 (1965) 581.
- [11] M. Egashira, K. Matsuo, S. Kagawa, T. Seiyama, J. Catal. 58 (1979) 409.
- [12] J.C. Jung, H. Kim, A.S. Choi, Y.-M. Chung, T.J. Kim, S.J. Lee, S.-H. Oh, I.K. Song, J. Mol. Catal. A 259 (2006) 166.
- [13] I. Matsuura, R. Shut, K. Hirakawa, J. Catal. 63 (1980) 152.
- [14] Z. Bing, S. Pei, S. Shishan, G. Xiexian, J. Chem. Soc. Faraday Trans. 86 (1990) 3145.
- [15] H.-G. Lintz, A. Quast, Catal. Lett. 46 (1997) 255.
- [16] D. Carson, G. Coudurier, M. Forissier, J.C. Vedrine, A. Laarif, F. Theobald, J. Chem. Soc. Faraday Trans. 79 (1983) 1921.
- [17] G.C.A. Schuit, J. Less Common Met. 36 (1974) 329.
- [18] Ph.A. Batist, A.H.W.M. Der Kinderen, Y. Leeuwnburgh, F.A.M.G. Metz, G.C.A. Schuit, J. Catal. 12 (1968) 45.
- [19] E. Ruckenstein, R. Krishnan, K.N. Rai, J. Catal. 45 (1976) 270.
- [20] M.F. Porteal, Top. Catal. 15 (2001) 241.
- [21] Y.M. Oka, W. Ueda, Adv. Catal. 40 (1994) 233.
- [22] R.K. Grasselli, Handbook of Heterogeneous Catalysis, Wiley Publishing, New York, 1997.
- [23] B. Grzybowska, J. Haber, J. Komorek, J. Catal. 25 (1972) 25.
- [24] E.V. Hoefs, J.R. Monnier, G.W. Keulks, J. Catal. 57 (1979) 331.
- [25] P. Boutry, R. Montarnal, J. Wrzyszcz, J. Catal. 13 (1969) 75.
- [26] L.D. Krenzke, G.W. Keulks, J. Catal. 64 (1980) 295.